A SEM example

In our second example, we will use the built-in PoliticalDemocracy dataset. This is a dataset that has been used by Bollen in his 1989 book on structural equation modeling (and elsewhere). To learn more about the dataset, see its help page and the references therein.

The figure below contains a graphical representation of the model that we want to fit.

Political Democracy SEM example

The corresponding lavaan syntax for specifying this model is as follows:

model <- '
  # measurement model
    ind60 =~ x1 + x2 + x3
    dem60 =~ y1 + y2 + y3 + y4
    dem65 =~ y5 + y6 + y7 + y8
  # regressions
    dem60 ~ ind60
    dem65 ~ ind60 + dem60
  # residual correlations
    y1 ~~ y5
    y2 ~~ y4 + y6
    y3 ~~ y7
    y4 ~~ y8
    y6 ~~ y8
'

In this example, we use three different formula types: latent variable definitions (using the =~ operator), regression formulas (using the ~ operator), and (co)variance formulas (using the ~~ operator). The regression formulas are similar to ordinary formulas in R. The (co)variance formulas typically have the following form:

variable ~~ variable

The variables can be either observed or latent variables. If the two variable names are the same, the expression refers to the variance (or residual variance) of that variable. If the two variable names are different, the expression refers to the (residual) covariance among these two variables. The lavaan package automatically makes the distinction between variances and residual variances.

In our example, the expression y1 ~~ y5 allows the residual variances of the two observed variables to be correlated. This is sometimes done if it is believed that the two variables have something in common that is not captured by the latent variables. In this case, the two variables refer to identical scores, but measured in two different years (1960 and 1965, respectively). Note that the two expressions y2 ~~ y4 and y2 ~~ y6, can be combined into the expression y2 ~~ y4 + y6, because the variable on the left of the ~~ operator (y2) is the same. This is just a shorthand notation.

We enter the model syntax as follows:

model <- '
  # measurement model
    ind60 =~ x1 + x2 + x3
    dem60 =~ y1 + y2 + y3 + y4
    dem65 =~ y5 + y6 + y7 + y8
  # regressions
    dem60 ~ ind60
    dem65 ~ ind60 + dem60
  # residual correlations
    y1 ~~ y5
    y2 ~~ y4 + y6
    y3 ~~ y7
    y4 ~~ y8
    y6 ~~ y8
'

To fit the model and see the results we can type:

fit <- sem(model, data = PoliticalDemocracy)
summary(fit, standardized = TRUE)
lavaan 0.6-18 ended normally after 68 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        31

  Number of observations                            75

Model Test User Model:
                                                      
  Test statistic                                38.125
  Degrees of freedom                                35
  P-value (Chi-square)                           0.329

Parameter Estimates:

  Standard errors                             Standard
  Information                                 Expected
  Information saturated (h1) model          Structured

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  ind60 =~                                                              
    x1                1.000                               0.670    0.920
    x2                2.180    0.139   15.742    0.000    1.460    0.973
    x3                1.819    0.152   11.967    0.000    1.218    0.872
  dem60 =~                                                              
    y1                1.000                               2.223    0.850
    y2                1.257    0.182    6.889    0.000    2.794    0.717
    y3                1.058    0.151    6.987    0.000    2.351    0.722
    y4                1.265    0.145    8.722    0.000    2.812    0.846
  dem65 =~                                                              
    y5                1.000                               2.103    0.808
    y6                1.186    0.169    7.024    0.000    2.493    0.746
    y7                1.280    0.160    8.002    0.000    2.691    0.824
    y8                1.266    0.158    8.007    0.000    2.662    0.828

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  dem60 ~                                                               
    ind60             1.483    0.399    3.715    0.000    0.447    0.447
  dem65 ~                                                               
    ind60             0.572    0.221    2.586    0.010    0.182    0.182
    dem60             0.837    0.098    8.514    0.000    0.885    0.885

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .y1 ~~                                                                 
   .y5                0.624    0.358    1.741    0.082    0.624    0.296
 .y2 ~~                                                                 
   .y4                1.313    0.702    1.871    0.061    1.313    0.273
   .y6                2.153    0.734    2.934    0.003    2.153    0.356
 .y3 ~~                                                                 
   .y7                0.795    0.608    1.308    0.191    0.795    0.191
 .y4 ~~                                                                 
   .y8                0.348    0.442    0.787    0.431    0.348    0.109
 .y6 ~~                                                                 
   .y8                1.356    0.568    2.386    0.017    1.356    0.338

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .x1                0.082    0.019    4.184    0.000    0.082    0.154
   .x2                0.120    0.070    1.718    0.086    0.120    0.053
   .x3                0.467    0.090    5.177    0.000    0.467    0.239
   .y1                1.891    0.444    4.256    0.000    1.891    0.277
   .y2                7.373    1.374    5.366    0.000    7.373    0.486
   .y3                5.067    0.952    5.324    0.000    5.067    0.478
   .y4                3.148    0.739    4.261    0.000    3.148    0.285
   .y5                2.351    0.480    4.895    0.000    2.351    0.347
   .y6                4.954    0.914    5.419    0.000    4.954    0.443
   .y7                3.431    0.713    4.814    0.000    3.431    0.322
   .y8                3.254    0.695    4.685    0.000    3.254    0.315
    ind60             0.448    0.087    5.173    0.000    1.000    1.000
   .dem60             3.956    0.921    4.295    0.000    0.800    0.800
   .dem65             0.172    0.215    0.803    0.422    0.039    0.039

The function sem() is very similar to the function cfa(). In fact, the two functions are currently almost identical, but this may change in the future. In the summary() function, we omitted the fit.measures = TRUE argument. Therefore, you only get the basic chi-square test statistic. The argument standardized = TRUE augments the output with standardized parameter values. Two extra columns of standardized parameter values are printed. In the first column (labeled Std.lv), only the latent variables are standardized. In the second column (labeled Std.all), both latent and observed variables are standardized. The latter is often called the ‘completely standardized solution’.

The complete code to specify and fit this model is printed again below:

library(lavaan) # only needed once per session
model <- '
  # measurement model
    ind60 =~ x1 + x2 + x3
    dem60 =~ y1 + y2 + y3 + y4
    dem65 =~ y5 + y6 + y7 + y8
  # regressions
    dem60 ~ ind60
    dem65 ~ ind60 + dem60
  # residual correlations
    y1 ~~ y5
    y2 ~~ y4 + y6
    y3 ~~ y7
    y4 ~~ y8
    y6 ~~ y8
'
fit <- sem(model, data=PoliticalDemocracy)
summary(fit, standardized=TRUE)