```
<- cfa(HS.model,
fit data = HolzingerSwineford1939,
meanstructure = TRUE)
summary(fit)
```

```
lavaan 0.6.17.1884 ended normally after 35 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 30
Number of observations 301
Model Test User Model:
Test statistic 85.306
Degrees of freedom 24
P-value (Chi-square) 0.000
Parameter Estimates:
Standard errors Standard
Information Expected
Information saturated (h1) model Structured
Latent Variables:
Estimate Std.Err z-value P(>|z|)
visual =~
x1 1.000
x2 0.554 0.100 5.554 0.000
x3 0.729 0.109 6.685 0.000
textual =~
x4 1.000
x5 1.113 0.065 17.014 0.000
x6 0.926 0.055 16.703 0.000
speed =~
x7 1.000
x8 1.180 0.165 7.152 0.000
x9 1.082 0.151 7.155 0.000
Covariances:
Estimate Std.Err z-value P(>|z|)
visual ~~
textual 0.408 0.074 5.552 0.000
speed 0.262 0.056 4.660 0.000
textual ~~
speed 0.173 0.049 3.518 0.000
Intercepts:
Estimate Std.Err z-value P(>|z|)
.x1 4.936 0.067 73.473 0.000
.x2 6.088 0.068 89.855 0.000
.x3 2.250 0.065 34.579 0.000
.x4 3.061 0.067 45.694 0.000
.x5 4.341 0.074 58.452 0.000
.x6 2.186 0.063 34.667 0.000
.x7 4.186 0.063 66.766 0.000
.x8 5.527 0.058 94.854 0.000
.x9 5.374 0.058 92.546 0.000
visual 0.000
textual 0.000
speed 0.000
Variances:
Estimate Std.Err z-value P(>|z|)
.x1 0.549 0.114 4.833 0.000
.x2 1.134 0.102 11.146 0.000
.x3 0.844 0.091 9.317 0.000
.x4 0.371 0.048 7.779 0.000
.x5 0.446 0.058 7.642 0.000
.x6 0.356 0.043 8.277 0.000
.x7 0.799 0.081 9.823 0.000
.x8 0.488 0.074 6.573 0.000
.x9 0.566 0.071 8.003 0.000
visual 0.809 0.145 5.564 0.000
textual 0.979 0.112 8.737 0.000
speed 0.384 0.086 4.451 0.000
```