<- '
lower 11.834
6.947 9.364
6.819 5.091 12.532
4.783 5.028 7.495 9.986
-3.839 -3.889 -3.841 -3.625 9.610
-21.899 -18.831 -21.748 -18.775 35.522 450.288 '
<-
wheaton.cov getCov(lower, names = c("anomia67", "powerless67",
"anomia71", "powerless71",
"education", "sei"))
Covariance matrix input
If you have no full dataset, but you do have a sample covariance matrix, you can still fit your model. If you wish to add a mean structure, you need to provide a mean vector too. Importantly, if only sample statistics are provided, you must specify the number of observations that were used to compute the sample moments. The following example illustrates the use of a sample covariance matrix as input. First, we read in the lower half of the covariance matrix (including the diagonal):
The getCov()
function makes it easy to create a full covariance matrix (including variable names) if you only have the lower-half elements (perhaps pasted from a textbook or a paper). Note that the lower-half elements are written between two single quotes. Therefore, you have some additional flexibility. You can add comments, and blank lines. If the numbers are separated by a comma, or a semi-colon, that is fine too. For more information about getCov()
, see the online manual page.
Next, we can specify our model, estimate it, and request a summary of the results:
# classic wheaton et al. model
<- '
wheaton.model # latent variables
ses =~ education + sei
alien67 =~ anomia67 + powerless67
alien71 =~ anomia71 + powerless71
# regressions
alien71 ~ alien67 + ses
alien67 ~ ses
# correlated residuals
anomia67 ~~ anomia71
powerless67 ~~ powerless71
'
<- sem(wheaton.model,
fit sample.cov = wheaton.cov,
sample.nobs = 932)
summary(fit, standardized = TRUE)
lavaan 0.6-18 ended normally after 84 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 17
Number of observations 932
Model Test User Model:
Test statistic 4.735
Degrees of freedom 4
P-value (Chi-square) 0.316
Parameter Estimates:
Standard errors Standard
Information Expected
Information saturated (h1) model Structured
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
ses =~
education 1.000 2.607 0.842
sei 5.219 0.422 12.364 0.000 13.609 0.642
alien67 =~
anomia67 1.000 2.663 0.774
powerless67 0.979 0.062 15.895 0.000 2.606 0.852
alien71 =~
anomia71 1.000 2.850 0.805
powerless71 0.922 0.059 15.498 0.000 2.628 0.832
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
alien71 ~
alien67 0.607 0.051 11.898 0.000 0.567 0.567
ses -0.227 0.052 -4.334 0.000 -0.207 -0.207
alien67 ~
ses -0.575 0.056 -10.195 0.000 -0.563 -0.563
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.anomia67 ~~
.anomia71 1.623 0.314 5.176 0.000 1.623 0.356
.powerless67 ~~
.powerless71 0.339 0.261 1.298 0.194 0.339 0.121
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.education 2.801 0.507 5.525 0.000 2.801 0.292
.sei 264.597 18.126 14.597 0.000 264.597 0.588
.anomia67 4.731 0.453 10.441 0.000 4.731 0.400
.powerless67 2.563 0.403 6.359 0.000 2.563 0.274
.anomia71 4.399 0.515 8.542 0.000 4.399 0.351
.powerless71 3.070 0.434 7.070 0.000 3.070 0.308
ses 6.798 0.649 10.475 0.000 1.000 1.000
.alien67 4.841 0.467 10.359 0.000 0.683 0.683
.alien71 4.083 0.404 10.104 0.000 0.503 0.503
The sample.cov.rescale
argument
If the estimator is ML
(the default), then the sample variance-covariance matrix will be rescaled by a factor (N-1)/N. The reasoning is the following: the elements in a sample variance-covariance matrix have (usually) been divided by N-1. But the (normal-based) ML estimator would divide the elements by N. Therefore, we need to rescale. If you don’t want this to happen (for example in a simulation study), you can provide the argument sample.cov.rescale = FALSE
.
Multiple groups
If you have multiple groups, the sample.cov
argument must be a list containing the sample variance-covariance matrix of each group as a separate element in the list. If a mean structure is needed, the sample.mean
argument must be a list containing the sample means of each group. Finally, the sample.nobs
argument can be either a list or an integer vector containing the number of observations for each group.