
lavaan note: equality constraints

Yves Rosseel

April 4, 2015

1 Introduction

• in version 0.5-17 (and lower), there were two types of equality constraints in lavaan:

1. simple equality constraints (usually specified in the model syntax by using the same label for multiple
parameters, or in the multiple group setting, by using the group.equal argument)

2. general (linear or nonlinear) equality constraints, explicitly specified by using the ‘==’ operator

• the two types of constraints were handled in a very different way. We will provide the details below. In
version 0.5-18, we make another distinction:

1. linear equality constraints

2. non-linear equality constraints

• again, linear equality constraints are handled in a very different manner than non-linear equality con-
straints. But for the linear constraints, we no longer make the distinction between simple equality
constraints and more general (but linear) equality constraints

• this note documents the implementational details of both the old (0.5-17) and the new (0.5-18) approach

2 Equality constraints in 0.5-17

2.1 Approach 1: implicit constraints using labels

• we will use the Holzinger & Swineford 3-factor CFA example to illustrate the details; consider the
following model:

HS.model <- ’
visual =˜ x1 + a*x2 + a*x3
textual =˜ x4 + b*x5 + b*x6
speed =˜ x7 + c*x8 + c*x9

’
fit <- cfa(HS.model, data=HolzingerSwineford1939

• this model took about 0.185 seconds to run

• have a look at the parameter table:

> parTable(fit)
id lhs op rhs user group free ustart exo label eq.id unco

1 1 visual =˜ x1 1 1 0 1 0 0 0
2 2 visual =˜ x2 1 1 1 NA 0 a 2 1
3 3 visual =˜ x3 1 1 1 NA 0 a 2 2
4 4 textual =˜ x4 1 1 0 1 0 0 0
5 5 textual =˜ x5 1 1 2 NA 0 b 5 3
6 6 textual =˜ x6 1 1 2 NA 0 b 5 4
7 7 speed =˜ x7 1 1 0 1 0 0 0
8 8 speed =˜ x8 1 1 3 NA 0 c 8 5
9 9 speed =˜ x9 1 1 3 NA 0 c 8 6
10 10 x1 ˜˜ x1 0 1 4 NA 0 0 7
11 11 x2 ˜˜ x2 0 1 5 NA 0 0 8
12 12 x3 ˜˜ x3 0 1 6 NA 0 0 9
13 13 x4 ˜˜ x4 0 1 7 NA 0 0 10
14 14 x5 ˜˜ x5 0 1 8 NA 0 0 11
15 15 x6 ˜˜ x6 0 1 9 NA 0 0 12
16 16 x7 ˜˜ x7 0 1 10 NA 0 0 13
17 17 x8 ˜˜ x8 0 1 11 NA 0 0 14
18 18 x9 ˜˜ x9 0 1 12 NA 0 0 15
19 19 visual ˜˜ visual 0 1 13 NA 0 0 16
20 20 textual ˜˜ textual 0 1 14 NA 0 0 17
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21 21 speed ˜˜ speed 0 1 15 NA 0 0 18
22 22 visual ˜˜ textual 0 1 16 NA 0 0 19
23 23 visual ˜˜ speed 0 1 17 NA 0 0 20
24 24 textual ˜˜ speed 0 1 18 NA 0 0 21

• the nonzero elements in the ‘free’ column are the free model parameters (18 in this example); some
numbers (1, 2 and 3) are duplicated, reflecting the fact that these parameters are one and the same;
the nonzero elements in the ‘unco’ column are the free model parameters if we ignore the equality
constraints; the ‘eq.id’ column contains the parameter ‘id’ numbers (1st column) of those parameters
that were constrained to be equal to each other

• as far as lavaan is concerned, there are only 18 free parameters in this model, as reflected in the output
of coef() and vcov():

> coef(fit)
a b c x1˜˜x1

0.652 1.004 1.156 0.552
x2˜˜x2 x3˜˜x3 x4˜˜x4 x5˜˜x5
1.113 0.875 0.380 0.514
x6˜˜x6 x7˜˜x7 x8˜˜x8 x9˜˜x9
0.321 0.816 0.520 0.534

visual˜˜visual textual˜˜textual speed˜˜speed visual˜˜textual
0.806 0.971 0.368 0.420

visual˜˜speed textual˜˜speed
0.265 0.175

> dim( vcov(fit) )
[1] 18 18

• this implies that we can use unconstrained optimization (with 18 free parameters), and there is no need
to use more sophisticated algorithms for constrained optimization

• internally, we often need to convert between the unconstrained 21-parameter vector, and the constrained
18-parameter vector; this is done using a (manually constructed) 21 × 18 indicator matrix stored in
fit@Model@eq.constraints.K:

> fit@Model@eq.constraints.K
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]

[1,] 1 0 0 0 0 0 0 0 0 0 0 0 0
[2,] 1 0 0 0 0 0 0 0 0 0 0 0 0
[3,] 0 1 0 0 0 0 0 0 0 0 0 0 0
[4,] 0 1 0 0 0 0 0 0 0 0 0 0 0
[5,] 0 0 1 0 0 0 0 0 0 0 0 0 0
[6,] 0 0 1 0 0 0 0 0 0 0 0 0 0
[7,] 0 0 0 1 0 0 0 0 0 0 0 0 0
[8,] 0 0 0 0 1 0 0 0 0 0 0 0 0
[9,] 0 0 0 0 0 1 0 0 0 0 0 0 0
[10,] 0 0 0 0 0 0 1 0 0 0 0 0 0
[11,] 0 0 0 0 0 0 0 1 0 0 0 0 0
[12,] 0 0 0 0 0 0 0 0 1 0 0 0 0
[13,] 0 0 0 0 0 0 0 0 0 1 0 0 0
[14,] 0 0 0 0 0 0 0 0 0 0 1 0 0
[15,] 0 0 0 0 0 0 0 0 0 0 0 1 0
[16,] 0 0 0 0 0 0 0 0 0 0 0 0 1
[17,] 0 0 0 0 0 0 0 0 0 0 0 0 0
[18,] 0 0 0 0 0 0 0 0 0 0 0 0 0
[19,] 0 0 0 0 0 0 0 0 0 0 0 0 0
[20,] 0 0 0 0 0 0 0 0 0 0 0 0 0
[21,] 0 0 0 0 0 0 0 0 0 0 0 0 0

[,14] [,15] [,16] [,17] [,18]
[1,] 0 0 0 0 0
[2,] 0 0 0 0 0
[3,] 0 0 0 0 0
[4,] 0 0 0 0 0
[5,] 0 0 0 0 0
[6,] 0 0 0 0 0
[7,] 0 0 0 0 0
[8,] 0 0 0 0 0
[9,] 0 0 0 0 0
[10,] 0 0 0 0 0
[11,] 0 0 0 0 0
[12,] 0 0 0 0 0
[13,] 0 0 0 0 0
[14,] 0 0 0 0 0
[15,] 0 0 0 0 0
[16,] 0 0 0 0 0
[17,] 1 0 0 0 0
[18,] 0 1 0 0 0
[19,] 0 0 1 0 0
[20,] 0 0 0 1 0
[21,] 0 0 0 0 1

• there are only a few places in the lavaan code where this matrix is used:
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1. to convert the unconstrained (21-parameter) gradient vector to a constrained (18-parameter) gra-
dient vector:

# lav_model_gradient.R: line 138
dx <- as.numeric( t(lavmodel@eq.constraints.K) %*% dx )

2. to convert/reduce the columns of the ‘Delta’ matrix (the Jacobian matrix ∂s(θ)/∂θ′, where s(·) is
a function returning the model-implied sample statistics, and θ is the parameter vector)

# lav_model_gradient.R: line 519
Delta.group <- Delta.group %*% lavmodel@eq.constraints.K

3. to handle the equality constraints when computing standardized parameter values
# lav_object_methods.R: line 727
JAC <- JAC %*% object@Model@eq.constraints.K

• the first two are related to the computation of the (analytical) gradient, and as a result, the various
information matrices (expected, observed or first.order) always have the dimension 18× 18; for example

> E <- lavaan:::computeExpectedInformation(lavmodel = fit@Model, lavsamplestats = fit@SampleStats)
> dim(E)
[1] 18 18

2.2 Approach 2: explicit constraints using the ‘==’ operator

• consider the following syntax, where we use an alternative way to impose the equality constraints:

HS.model <- ’
visual =˜ x1 + a1*x2 + a2*x3
textual =˜ x4 + b1*x5 + b2*x6
speed =˜ x7 + c1*x8 + c2*x9

a1 == a2
b1 == b2
c1 == c2

’
fit <- cfa(HS.model, data=HolzingerSwineford1939)

• this model took 0.259 seconds to run; however, the fit, and all estimated parameter estimates are identical
to the estimates obtained in the model fit from the 1st approach

• this is the parameter table:

> parTable(fit)
id lhs op rhs user group free ustart exo label eq.id unco

1 1 visual =˜ x1 1 1 0 1 0 0 0
2 2 visual =˜ x2 1 1 1 NA 0 a1 0 1
3 3 visual =˜ x3 1 1 2 NA 0 a2 0 2
4 4 textual =˜ x4 1 1 0 1 0 0 0
5 5 textual =˜ x5 1 1 3 NA 0 b1 0 3
6 6 textual =˜ x6 1 1 4 NA 0 b2 0 4
7 7 speed =˜ x7 1 1 0 1 0 0 0
8 8 speed =˜ x8 1 1 5 NA 0 c1 0 5
9 9 speed =˜ x9 1 1 6 NA 0 c2 0 6
10 10 x1 ˜˜ x1 0 1 7 NA 0 0 7
11 11 x2 ˜˜ x2 0 1 8 NA 0 0 8
12 12 x3 ˜˜ x3 0 1 9 NA 0 0 9
13 13 x4 ˜˜ x4 0 1 10 NA 0 0 10
14 14 x5 ˜˜ x5 0 1 11 NA 0 0 11
15 15 x6 ˜˜ x6 0 1 12 NA 0 0 12
16 16 x7 ˜˜ x7 0 1 13 NA 0 0 13
17 17 x8 ˜˜ x8 0 1 14 NA 0 0 14
18 18 x9 ˜˜ x9 0 1 15 NA 0 0 15
19 19 visual ˜˜ visual 0 1 16 NA 0 0 16
20 20 textual ˜˜ textual 0 1 17 NA 0 0 17
21 21 speed ˜˜ speed 0 1 18 NA 0 0 18
22 22 visual ˜˜ textual 0 1 19 NA 0 0 19
23 23 visual ˜˜ speed 0 1 20 NA 0 0 20
24 24 textual ˜˜ speed 0 1 21 NA 0 0 21
25 25 a1 == a2 1 0 0 NA 0 0 0
26 26 b1 == b2 1 0 0 NA 0 0 0
27 27 c1 == c2 1 0 0 NA 0 0 0

• here, we have 21 ‘free’ parameters (and the free and unco columns are identical); the ‘eq.id’ column is
empty, but we have three additional rows in the parameter table reflecting the user-specified equality
constraints

• unlike the previous setting, lavaan will now use constrained optimization, which can take (much) longer

• the output of coef() and vcov() now reflects the fact that we have 21 (instead of 18) parameters,
although they do take the constraints into account
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> coef(fit)
a1 a2 b1 b2

0.652 0.652 1.004 1.004
c1 c2 x1˜˜x1 x2˜˜x2

1.156 1.156 0.552 1.113
x3˜˜x3 x4˜˜x4 x5˜˜x5 x6˜˜x6
0.875 0.380 0.514 0.321
x7˜˜x7 x8˜˜x8 x9˜˜x9 visual˜˜visual
0.816 0.520 0.534 0.806

textual˜˜textual speed˜˜speed visual˜˜textual visual˜˜speed
0.971 0.368 0.420 0.265

textual˜˜speed
0.175

> dim( vcov(fit) )
[1] 21 21

• there is no matrix fit@Model@eq.constraints.K, but lavaan has contructed a ‘constraint function’ (say,
a(θ) where θ is the unconstrained parameter vector) to evaluate the (three) equality constraints:

> fit@Model@ceq.function
function (x, ...)
{

out <- rep(NA, 3)
a1 = x[1]
a2 = x[2]
out[1] = a1 - (a2)
b1 = x[3]
b2 = x[4]
out[2] = b1 - (b2)
c1 = x[5]
c2 = x[6]
out[3] = c1 - (c2)
out[is.na(out)] <- Inf
return(out)

}

• the input of this constraint function is the full (21-parameter) vector of free model parameters; for
each constraint, the output should be (close to) zero if the constraint is satisfied; the Jacobian of this
constraint function A = ∂a(θ)/∂θ′ gives the constraint matrix (A):

> A <- fit@Model@con.jac[,]
> A

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
[1,] 1 -1 0 0 0 0 0 0 0 0 0 0 0 0
[2,] 0 0 1 -1 0 0 0 0 0 0 0 0 0 0
[3,] 0 0 0 0 1 -1 0 0 0 0 0 0 0 0

[,15] [,16] [,17] [,18] [,19] [,20] [,21]
[1,] 0 0 0 0 0 0 0
[2,] 0 0 0 0 0 0 0
[3,] 0 0 0 0 0 0 0

• only if the constraints are linear, this matrix will contain constants; if the constraints are nonlinear, the
elements in this matrix will be a function of the (current) parameter values (and they will change from
iteration to iteration)

• the information matrices (observed, first.order or expected) all have dimension 21×21; but they do NOT
reflect the equality constraints yet; for example

> E <- lavaan:::computeExpectedInformation(fit@Model, lavsamplestats=fit@SampleStats)
> dim(E)
[1] 21 21
> qr(E)$rank
[1] 21

• here, the rank is 21 because the constraints are not needed to identify the model; if the constraints are
needed to identify the model, the rank will be lower than 21

• when we need to invert the information matrix, we first ‘augment’ the rows and the columns of this
matrix with the A matrix, resulting in a so-called ‘bordered information matrix’ (of dimension 24× 24);
then we take the (generalized) inverse of this bordered information matrix; and finally, we again remove
the extra borders, and only the retain the first 21 rows and columns to get our ‘inverted information
matrix’; to illustrate:

> E.augment <- rbind( cbind(E, t(A)),
cbind(A, matrix(0,nrow(A),nrow(A))) )

> E.augment.inv <- solve(E.augment)
> E.inv <- E.augment.inv[1:21, 1:21]

• the real code is slightly more complicated (also taking into account possible inequality constraints), and
can be found for example in the file lav_vcov.R around the lines 22–42
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2.3 The problem

• the problem with lavaan 0.5-17 (and lower) is that it uses two (very different) approaches to handle
equality constraints

• when the two approaches are combined, this leads to problems, for example (in 0.5-17):

> HS.model <- ’
visual =˜ x1 + a*x2 + a*x3
textual =˜ x4 + b*x5 + b*x6
speed =˜ x7 + c1*x8 + c2*x9

c1 == c2
’

> fit <- cfa(HS.model, data=HolzingerSwineford1939)
> modindices(fit)
Error in if (nrow(H) > 0L) { : argument is of length zero

• the first approach is much, much more efficient, but only works for simple equality constraints; we only
see the ‘reduced’ vectors/matrices, and the information matrix is automatically adjusted to take the
constraints into account

• the second approach relies on constrained optimization, and is slower, yet more general; it has the
advantage that many vectors/matrices retain their original size (reflecting the size of the unconstrained
parameter vector), but of course, care is needed when we need to compute for example the inverse of the
information matrix, where we need to explicitly take the constraints into account

• what if we could combine the speed/efficiency of the 1st approach, with the generality of the second
approach? this is what motivated the change in 0.5-18

3 Equality constraints in 0.5-18

• in 0.5-18, we make a distinction between

1. linear equality constraints (including simple equality constraints)

2. non-linear equality constraints

• as an example of ‘general’ linear constraints, consider the following model:

HS.model <- ’
visual =˜ NA*x1 + a1*x1 + a2*x2 + a3*x3
textual =˜ NA*x4 + b1*x4 + b2*x5 + b3*x6
speed =˜ NA*x7 + c1*x7 + c2*x8 + c3*x9

a1 + a2 + a3 == 3
b1 + b2 + b3 == 3
c1 + c2 + c3 == 3

’
fit <- cfa(HS.model, data=HolzingerSwineford1939)

• both simple equality constraints (as in the examples above), and these more general ‘linear’ equality
constraints are now handled in a uniform way

• for all equality constraints, we set up a constraint function (again in fit@Model@ceq.function), and we
construct the Jacobian matrix A, which is now stored in fit@Model@ceq.JAC:

> fit@Model@ceq.JAC
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]

[1,] 1 1 1 0 0 0 0 0 0 0 0 0 0 0
[2,] 0 0 0 1 1 1 0 0 0 0 0 0 0 0
[3,] 0 0 0 0 0 0 1 1 1 0 0 0 0 0

[,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24]
[1,] 0 0 0 0 0 0 0 0 0 0
[2,] 0 0 0 0 0 0 0 0 0 0
[3,] 0 0 0 0 0 0 0 0 0 0

• the fit@Model@con.jac matrix is still available, but may also include inequality constraints

• the constants a0 = (3, 3, 3) that appear on the ‘righ-hand side’ of the constraints are stored in fit@Model@ceq.rhs,
while fit@Model@ceq.linear.idx and fit@Model@ceq.nonlinear.idx contain the indices of the rows
of A that correspond to linear and nonlinear constraints respectively

• consider again the setting with simple equality constraints:
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HS.model <- ’
visual =˜ x1 + a*x2 + a*x3
textual =˜ x4 + b*x5 + b*x6
speed =˜ x7 + c*x8 + c*x9

’
fit <- cfa(HS.model, data=HolzingerSwineford1939)

• in 0.5-18, the parameter table still contains the (unused) ‘unco’ and ‘eq.id’ columns, but this is only
temporarily (so that external packages can adapt); from 0.5-19 onwards, the parameter table will look
as follows:

> parTable(fit)
id lhs op rhs user group free ustart exo label plabel start

1 1 visual =˜ x1 1 1 0 1 0 .p1. 1.000
2 2 visual =˜ x2 1 1 1 NA 0 a .p2. 0.778
3 3 visual =˜ x3 1 1 2 NA 0 a .p3. 1.107
4 4 textual =˜ x4 1 1 0 1 0 .p4. 1.000
5 5 textual =˜ x5 1 1 3 NA 0 b .p5. 1.133
6 6 textual =˜ x6 1 1 4 NA 0 b .p6. 0.924
7 7 speed =˜ x7 1 1 0 1 0 .p7. 1.000
8 8 speed =˜ x8 1 1 5 NA 0 c .p8. 1.225
9 9 speed =˜ x9 1 1 6 NA 0 c .p9. 0.854
10 10 x1 ˜˜ x1 0 1 7 NA 0 .p10. 0.679
11 11 x2 ˜˜ x2 0 1 8 NA 0 .p11. 0.691
12 12 x3 ˜˜ x3 0 1 9 NA 0 .p12. 0.637
13 13 x4 ˜˜ x4 0 1 10 NA 0 .p13. 0.675
14 14 x5 ˜˜ x5 0 1 11 NA 0 .p14. 0.830
15 15 x6 ˜˜ x6 0 1 12 NA 0 .p15. 0.598
16 16 x7 ˜˜ x7 0 1 13 NA 0 .p16. 0.592
17 17 x8 ˜˜ x8 0 1 14 NA 0 .p17. 0.511
18 18 x9 ˜˜ x9 0 1 15 NA 0 .p18. 0.508
19 19 visual ˜˜ visual 0 1 16 NA 0 .p19. 0.050
20 20 textual ˜˜ textual 0 1 17 NA 0 .p20. 0.050
21 21 speed ˜˜ speed 0 1 18 NA 0 .p21. 0.050
22 22 visual ˜˜ textual 0 1 19 NA 0 .p22. 0.000
23 23 visual ˜˜ speed 0 1 20 NA 0 .p23. 0.000
24 24 textual ˜˜ speed 0 1 21 NA 0 .p24. 0.000
25 25 .p2. == .p3. 2 0 0 NA 0 0.000
26 26 .p5. == .p6. 2 0 0 NA 0 0.000
27 27 .p8. == .p9. 2 0 0 NA 0 0.000

• note that the non-zero elements in the ‘free’ column correspond to the unconstrained model parameters;
there is no longer a need for the ‘eq.id’ column nor an ‘unco’ column; but all equality constraints are
explicitly added to the parameter table as extra rows using the ‘==’ operator

• unlike lavaan 0.5-17, lavaan 0.5-18 ‘thinks’ there are 21 free parameters, and this is reflected in the output
of coef() and vcov:

> coef(fit)
a a b b

0.652 0.652 1.004 1.004
c c x1˜˜x1 x2˜˜x2

1.156 1.156 0.552 1.113
x3˜˜x3 x4˜˜x4 x5˜˜x5 x6˜˜x6
0.875 0.380 0.514 0.321
x7˜˜x7 x8˜˜x8 x9˜˜x9 visual˜˜visual
0.816 0.520 0.534 0.806

textual˜˜textual speed˜˜speed visual˜˜textual visual˜˜speed
0.971 0.368 0.420 0.265

textual˜˜speed
0.175

> dim( vcov(fit) )
[1] 21 21

• a somewhat unfortunate byproduct of this approach is that the inspect() function (currently) does not
show which parameters are constrained or not:

> inspect(fit)$lambda
visual textul speed

x1 0 0 0
x2 1 0 0
x3 2 0 0
x4 0 0 0
x5 0 3 0
x6 0 4 0
x7 0 0 0
x8 0 0 5
x9 0 0 6

• in general, it should be understood that all parameter vectors/matrices are now based on the uncon-
strained parameter vector; the constraints must be handled separately
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3.1 Estimation with linear equality constraints

• if some constraints are nonlinear, we revert back to constrained optimization

• if all constraints are linear, the Jacobian matrix A stays constant, and we can exploit this feature to
project the unconstrained parameter vector (say, ‘x’) to a reduced parameter vector (say, ‘x.red’) (see
e.g., Nocedal & Wright (2006) section 15.3 for a good description); this can be done as follows:

x.red <- (x - fit@Model@eq.constraints.k0) %*% lavmodel@eq.constraints.K

where fit@Model@eq.constraints.k0 and lavmodel@eq.constraints.K are computed as follows (see
the file lav_constraints.R):

QR <- qr(t(ceq.JAC))
ranK <- QR$rank
Q <- qr.Q(QR, complete = TRUE)
ceq.JAC.NULL <- Q[,-seq_len(ranK), drop = FALSE]
ceq.rhs.NULL <- ceq.rhs %*% qr.coef(QR, diag(ncol(A)))
eq.constraints.K <- ceq.JAC.NULL
eq.constraints.k0 <- ceq.rhs.NULL

• each time the objective function needs to be evaluated, we must project the reduced parameter vector
back to the unconstrained vector, which is done as follows:

x <- lavmodel@eq.constraints.K %*% x.red + lavmodel@eq.constraints.k0

• this avoids using a constrained optimization algorithm, and seems to be the most effective method to
handle (linear) equality constraints

3.2 The information matrix with linear equality constraints

• if we need to invert the information matrix, all constraints (linear, nonlinear, equality, inequality) are now
handled uniformly by using the ‘bordered’ (or augmented) information matrix approach (see Approach
2, in 0.5-17)

• a (new) convenience function lavTech(fit, "information") returns the unconstrained information
matrix (which can be useful on its own); an (internal) function takes care of the augmentation (and
optional inversion):

E <- lavTech(fit, "information")
E.inv <-

lavaan:::lav_model_information_augment_invert(lavmodel = fit@Model,
information = E,
inverted = TRUE)

• for convenience, in lavaan 0.5.18, the following options are available through the lavTech/lavInspect/inspect
functions:

E <- lavTech(fit, "information")
E <- lavTech(fit, "information.expected")
E <- lavTech(fit, "information.observed")
E <- lavTech(fit, "information.first.order")
E.aug <- lavTech(fit, "augmented.information")
E.aug <- lavTech(fit, "augmented.information.expected")
E.aug <- lavTech(fit, "augmented.information.observed")
E.aug <- lavTech(fit, "augmented.information.first.order")
E.inv <- lavTech(fit, "inverted.information")
E.inv <- lavTech(fit, "inverted.information.expected")
E.inv <- lavTech(fit, "inverted.information.observed")
E.inv <- lavTech(fit, "inverted.information.first.order")

• a ‘reduced’ version of many vectors/matrices can still be obtained by using the eq.constraints.K

matrix, but note that the rows of this matrix are now normalized, and this may have some (unwanted)
side-effects

4 Conclusion and outlook

• for applications that heavily rely on linear equality constraints, the changes in 0.5-18 have resulted in
huge improvements both in terms of speed and stability

• at the time of writing, all the side-effects of this change have not yet been fully addressed (for example,
in 0.5-18, the lav_partable_df() function does not take the equality constraints into account)
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• in addition, several add-on packages still rely on the ‘old’ (0.5-17) approach

• in the future, we plan to handle linear inequality constraints in a similar way (using slack variables)

• even for nonlinear constraints, the ‘reduction’ approach may be used to some extent; we will explore this
later
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